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DEFINITION OF SYMBOLS 

Definition Symbol 

matrix coefficients a.. 
1J 

C distance from ring neutral axis to corrugation centerline , 
positive when rings are on outside 

number of longitudinal half waves m 

number of circumferential waves n 

= m T/L - m 
- 
n = n/R 

buckling load per unit length of circumference, measured 
at corrugation centerline 

corrugation thickness t 

t t  txy y’ s 
equivalent shell thicknesses in the x and y directions and 
for shear, respectively per unit length of circumference 

displacements of cylinder at corrugation centerline 
in x,  y, and z directions, respectively 

coordinates in axial, tangential and radial directions , 
respectively 

x, y, 

r A 

Dx 

area of ring 

= EIx 

D D  
Y’ XY 

circumferential bending stiffness and torsional stiffness of 
the corrugated cylinder, respectively 

= E  I /Lr 
r Y r  

= E 1  /L  r z r  r 

moduli of elasticity of corrugation and ring, respectively 

= E tx 

= E  A / L  r r  r 

V 



Symbol 

G * Gr 

€ 

IX 

I 
Y r  

Izr 

r J 

r K 

L 

r L 

*x, My 

M 

M , M  

X y  

yr zr 

M 
Yxr 

N x y  Ny 

Qx' Qy 

Y r  
Q 

DEFINITION OF SYMBOLS (Cont'd) 

Definition 

shear moduli of corrugation and ring, respectively 

GtS 

moment of inertia of corrugation per unit length of circum- 
fer ence 

moment of inertia of ring about its centroid in plane of curvature 

moment of inertia of ring normal to plane of curvature 

I/G times torsional stiffness of ring r 

G J /L r r  r 

length of cylinder 

ring spacing 

stress couples acting on skin element in x and y directions, 
respectively 

torsional stress couple acting on skin element 

stress couples acting on ring element in y and z directions, 
respectively 

torsional stress couple acting on ring element 

stress resultants acting on skin element in x and y directions, 
respectively 

shear stress resultants acting on skin element 

stress resultant acting on ring element in y direction 

shear stress resultant acting on ring element in x 
direction 

radial shear stress resultants acting on skin element 

radial shear stress resultant acting on ring element 

vi 
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DEFINITION OF SYMBOLS (Concluded) 

Symbol 

R 

a! 

P 

Y 

K K  
x7 Y 

K 
XY 

K K  yr’ zr 

K 
Y Z  

h 

Px’ P 
Y 

Definition 

radius to centerline of corrugated skin 

= R + c  

moments acting at interface of skin and ring, per unit area 

amplitudes of u, v, and w, respectively 

forces acting at interface of skin and ring, per unit area 

number of rings per longitudinal half wave length 

bending factor, ratio of maximum buckling stress in pure 
bending to buckling stress in axial compression for a given 
cylinder 

ratio of maximum bending stress to maximum total s t ress  
for a cylinder under combined loading 

shear strain of corrugation 

strains of corrugation in x and y directions, respectively 

circumferential strain of ring 

= y/R 

curvature changes of corrugation in x and y directions, 
respectively 

specific twist of skin element 

curvature changes in plane and normal to plane of ring, 
respectively 

specific twist of ring 

Poisson’s ratios associated with bending in the x and y 
directions, respectively 

Poisson’s ratios associated with extension in the x and y 
directions, respectively 

longitudinal stress in corrugation 

v’ii 



THE GENERAL I N S T A B I L I T Y  OF RING-STIFFENED 
CORRUGATED CYLINDERS UNDER A X I A L  COMPRESS I O N  

SUMMARY 

A method is presented to determine the general instability load of a ring- 
stiffened corrugated cylinder under axial compression. 
using linear smal l  deflection theory. 
uniformly distributed along the cylinder and the eccentricity of the rings with re- 
spect to the corrugation centerline is taken into account. 

This method is developed 
The stiffness properties of the rings are 

Analytical and experimental resul ts  are compared. In this comparison 
good agreement is obtained for cylinders loaded in pure compression. For the 
cylinders subjected to bending o r  a combination of bending and compression the 
analytical calculations a re  conservative. 

A computer program for the application of this method has been developed. 
The program and a n  explanation of its notation are included in this report. 

INTRODUCTION 

Axially loaded ring-stiffened corrugated cylinders are susceptible to two 
Panel instability is types of instability; panel instability and general instability. 

defined as buckling of the cylinder between rings. In general instability, the rings 
as well  as the cylinder undergo buckling displacements. Panel instability is dis- 
cussed in many textbooks and manuals; however, the same is not true for general 
instability. 

In comparing the stiffness characterist ics of a corrugated cylinder to those 
of a monocoque cylinder of the same weight it must be noted that the corrugated 
shell has a much greater  longitudinal bending stiffness. This advantage is offset  
to some degree by the low circumferential extensional stiffness of the corrugated 
cylinder. 
corrugation will act as an individual column unless the shell is reinforced by rings. 
Low extensional stiffness may be desirable, however, in areas of high thermal 
gradients. 

Because of this lack of circumferential extensional stiffness each 

In the past, ring-stiffened cylinders have often been designed to prevent 
general instability by employing semi-empirical methods to s ize  the rings. One 
of the most commonly used of such methods is given by Shanley [ 13. Until re- 
cently it was believed that the ring moment of inertia obtained from his formula 



was sufficient to safeguard against general instability. 
the direction of the Marshall Space Flight Center as par t  of the Saturn V develop- 
ment program have shown, however, that Shanley's cri terion may be very uncon- 
servative for the design of ring-stiffened corrugated cylinders. 
these tests are given in  Tables I and 11. 

Tests performed under 

The resul ts  of 

Since Shanley's work was published, considerable research has been 
performed on the stability of stiffened cylinders. A major contribution was made 
by Van der  Neut [ 21 , when he considered the effect of ring and stringer eccentric- 
ities. Additional contributions were made by Hedgepeth and Hal l  [ 31 , Card [ 41, 
and Baruch and Singer [ 51 . Often, however, research  in this field has produced 
a method which is either too academic o r  too complex to be used by the s t r e s s  
analyst. 

The purpose of this report  is to present a reliable and relatively simple 

This method considers the eccentricity of the rings with respect  
means of predicting the general instability load of corrugated cylinders under axial 
compression. 
to the corrugation center line. I t  also incorporates all the stiffnesses attributable 
to the rings and the shear  and longitudinal stiffness properties of the corrugation. 
The circumferential extensional and bending stiffnesses and the torsional stiffness 
of the corrugation are small  (generally less  than I percent of the longitudinal 
stiffnesses) and are therefore neglected. 

GENERAL THEORY 

Assumptions 

The method of analysis presented in this paper is based on the following 
assumptions: 

i. Linear small  deflection theory applies. This is justified because 
the high longitudinal bending stiffness of a corrugated cylinder makes i t  less 
susceptible to initial imperfections and other monocoque effects. 

2. The longitudinal wavelength of the buckled skin is sufficiently large 
to permit a "smeared" ring approach; i. e. , all the ring stiffness parameters  
may be uniformly distributed along the cylinder. 

3. The corrugated cylinder can be treated as an equivalent orthotropic 
cylinder, the radius of which is equal to the mean radius of the corrugation. 

2 



4. The circumferential extensional and bending stiffnesses of the cor- 
rugation as well as its torsional stiffness can be neglected since they are small  
as compared to the longitudinal stiffness properties of the shell. 

5. Buckling displacements are sinusoidal. 

6. Prebuckling deformations a r e  neglected. 

7.  Plasticity effects and local failures are not considered. 

Displacements and Boundary Condit ions 

The cylinder is in equilibrium under the applied load just  pr ior  to buckling 
and deformations due to buckling a r e  measured from this position. In accordance 
with assumption 5, displacements may be written in the form 

m m  u = u cos - cos ne 
L 

v = v sin E sin no 
L 

m m  
L w =  W sin- cos ne 

This corresponds to the following simply supported boundary conditions at 
x =  0, L 

w = o  N = O  

v = o  M = O  

X 

X 

Thus, at the ends of the cylinder motion radially and tangentially is prevented, 
while longitudinal motion is allowed; i. e. , u f 0. 
appropriate for cylinders bounded by deep supporting rings,  which are rigid in 
their own planes but may readily bend o r  warp out of their planes. 

These boundary conditions are 

Elastic Relations 

For an orthotropic shell the relations for  the stress resultants and couples 
in t e rms  of the s t ra ins  and curvatures are 

3 



Et 

In view of assumption (4)  and with the use of the reciprocal theorem, 
equations (2 )  lead directly to the following expressions for the corrugated cylinder 

The rings are considered eccentric with respect to the centerline of the 
skin and displacements of the ring at its centroid may be found by means of the 
transform ations 

aw 
r ax 

c aw 
r R  R a e  

u = u - c  - 

v - -  - r R 
v = -  

w = w  r 

4 



where c is the distance from the r ing  centroid to the skin centerline. For a ring 
loaded normal to, as well as in the plane of, initial curvature, the s t ra in ,  curva- 
tures and specific twist a t  the central  axis, may be written 

m 
- R  r L, ax 

r 

Assuming the shear center to coincide with the ring centroid, the stress 
resultants and s t r e s s  couples acting on an element of the r ing are related to the 
s t ra ins  and curvatures by the equations 

M = D  IC z r  z r  zr 

M - K  I; 
yxr r yxr 

Substituting equations (4)  and (5) in the above expressions gives 

M -  -2 D [$ -: ( R r w + c  $1 
z r  R2 r 

5 



(6  concluded) 

Equilibrium Equations 

Differential equations are obtained by considering separately the equi- 
librium of an element of the skin and a corresponding "smeared" ring element. 
Six Fonditions of equilibrium must be satisfied by the forces and moments acting 
on each of the elements. An element of the skin is shown in Figure I a, by  c. 
The first of these figures shows the stress resultants and the forces X, Y, and Z 
acting at the interface of the skin and the ring, and the second figure gives the 
stress couples and the moments Tk and Ty transferred into the skin element from 
the ring. Components of the buckling force resulting from the deformation of the 
element are shown in Figure ic. 
by the quantity ( I  + ex) to include the straining of the middle surface as suggested 
by Flcgge ( 7 ) .  
&/ax and aw/ax of the element respectively. 

The component in the x direction is multiplied 

The components in the y and z directions a r e  due to the rotations 

The s ix  conditions of equilibrium for the skin lead to the following equations 

a N  
2 

ax 

X 
aQ 
ax 

aM 
X 

- ax +Qx 

N - N  
XY YX 

+ y = o  - 

+z= 0 - q s  

+ T  = O  
X 

T = O  
Y 

= o  

These equations may be combined and put in the form 

6 
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The six equations of equilibrium for 
They are be obtained in a similar manner. 

a N  
iyxr 
R a e  

R ae  ' R  

- x= 0 

- Y = O  

- z = o  

an element of the ring (Fig. 2) may 

aM a N  M I yxr  - c yxr zr  
R ae R ae  R X 

L Y ' - c  xr+Q - T  = O  

+- -  T = O  

BM aN 
R ae R ae  Y r  Y 

z r  aM 
= o  

Yxr 
R N  f 7 - M  r yxr 

The last three of the above equations are used to eliminate Qyr and Nyxr- 
This yields the following three equations 

aM I yxr a2 M 
zr +-  I '  x= -- 

r ae r ae2  R R  R R  

T R a N  BM 
y - J =  r gr -2- yr 

R R2 80 R~ ae 
a T  a T  N a2 N - -  C N r  

R ae2  a x  R ae 
a2 M 

R~ a x  a e  R ax zr R, ae2  

Z - -  

a2  M 
C - - I vxr - (M +- 

7 



The forces  X, Y, and Z and the moments T, and Ty acting at the inter- 
face of the skin and ring may now be eliminated by subtracting equation (8) from 
equation ( I O )  . Hence, 

aM zr I yxr  a% a N  aN a2 M 

ax R ae R R ae2 R R x+igx-i +- - 9 , , 2 = 0  ae r r 

8N R aN aM 
gx+r N r - i L r  

ax R~ ae R~ ae 
a2M N a2 N a2 M 

ax2 R R ae R~ ae2 
yxr a2 M 

R ax ae 
I 

r 
- x - x + + + - L 2 - -  

These are the equilibrium equations in te rms  of the stress resultants. 
Substituting the expressions ( 3 )  and ( 6 )  for  the stress resultants into equations 
(11) gives the equilibrium equations in te rms  of the displacements. 

8 
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Afte r  introducing the expression for the displacements given by equations 
( I )  into the differential equations (12) one obtains the following three linear equa- 
tions. 

+ q m 2  w = 0 

Determination of Buckl ing Load 

The se t  of homogeneous equations (13)  has nontrivial solutions only when 
the determinant of its matrix is zero. 
form 

Equations (13) may be written in matrix 

9 



The determinant of the characterist ic matrix of A is a polynominal of the 
third degree in  A. 
known values of m and n has therefore been reduced to that of finding the roots 
(eigenvalues) of the characterist ic equation 

The problem of determining the buckling load ( q  = Ah’?)  for 

where a, b, and c are known functions of the coefficients aij. 
real and positive roots of equation (15) are of interest, the lowest of which de- 
termines the buckling load for  the mode shape under consideration. 
buckling load of the cylinder may be found by calculating q for a range of values 
of m and n, and plotting a family of curves as shown in Figure 3. 
buckling load will then be the minimum value of q corresponding to integer values 
of m and n. If the computer program (see  Appendix) is used, the minimum 
buckling load will  be indicated for the specified range of m and n, and no plotting 
is required. 

Obviously only 

The crit ical  

The crit ical  

Since W is usually in the order  of n times larger  than V o r  U an approxi- 
mate solution for  q may be obtained by dropping the te rms  containing q in the 
first two of equations ( 1 3 ) .  This yields 

where IAI is the determinant of the symmetrical matrix 

If an iterative procedure is used to find the roots of equation (15) ,  the above 
approximation is found to be very useful as a start ing point. 

COMPARISON W I T H  TEST RESULTS 

Axial Load 

A s  a par t  of the Saturn V developmeqt program eleven ring-stiffened 
corrugated cylinders were tested to failure under axial load. Of these, five 

10 



failed in general instability. The remaining cylinders failed either by panel in- 
stability o r  local crippling before the general instability load was reached. A 
photograph of a typical general instability failure is shown in Figure 4. Figure 5 
shows one of the rings of this cylinder after the failure. Table I gives the geom- 
etries of these five cylinders along with their actual and calculated failure loads. 
The close agreement between the experimental data and calculations supports the 
validity of the method of analysis given in this report. 

TABLE I. RING-STIFFENED CORRUGATED CYLINDERS - AXIAL LOADING 

-- I CYLINDER 

Aluminum Alloy 
Cylinder Length ( in .  ) 

( c m )  

Radius (in.  ) 
( c m )  

Corrugat ion  Pitch (in. ) 
( c m )  

Corrugat ion  Thickness (in. ) 
( c m )  

Corrugat ion  Depth (in.  ) 
( c m )  

Type of Ring 

Ring Spacing (in.  ) 
( c m )  

Ring Moment of Ine r t i a  (in. 4 ,  

( c m 4 )  

Ring A r e a  (in.  ') 
(4 

Ring Eccentr ic i ty  ( in .  ) 
( c m )  

Actual Failure Load (Kips)  
( N )  

Calculated Fa i lu re  Load (Kips)  
(N) 

P e r c e n t  E q r o r  (70) -. ~ 

* For this ring an effective 
moment  of ine r t i a  and ef- 
fective area w e r e  calculated 
using the approach  g iven  in 
Reference  9 .  

No. 1 

7075-T6 
33 .0  
83. 8 

24 .7  
62.7 

1 .43  
3. 63 

0.020 
0. 05 

0.44 
1.12 

E 
6. 38 

16.21 

0. 0050 
0.208 

0.040 
0.258 

-0.73 
-1.85 

131. 
5. 83 i o 5  
118. 
5.25 x 105 

11.0 

~ - 

No. 2 
- 

7 07 5- T6  
33.0 
83.8 

24.7 
62. 7 

1.43 
3. 63 

0.019 
0.048 

0. 44 
I .  12 

I 
6.38 

16.21 

0.0104 
0.433 

0.121 
0. 78 

-0.53 
-1.35 

174. 
7.74 x 101 

198. 
8.81 x 105 

-42.1- 

No. 3 

7075-T6 
33.0 
83. 8 

24. 7 
62.7 

1.43 
3. 63 

0.025 
Q 06 

0.44 
I. 12  

I 
6. 38 

16.21 

0.0104 
0.433 

0.121 
0. 78 

-0.53 
-1.35 

224. 
9. 96 i o 5  
233. 
1 . 0 4 ~  l o 6  

-3. 9 

~ 

No. 4 

7075-T6 
69. 6 

176.8 

49.4 
125.0 

2.85 
7.24 

0.041 
0.10 

0. 87 
2 .21  

71 
12 .4  
31. 5 

0.286 
11 .9  

0.180 
1.16 

-1.99 
- 5 . 0 5  

659. 
2.93 x 10' 

654. 
2.91 x 10  

0. 8 

No. 5 

7075-T6 
69.6 

176.8 

49.4 
125. 0 

2.85 
7.24 

0.041 
0.10 

0.87 
2.21'  

I 
12.4  
31.5 

0.286 
11.9 

0.180 
1 .16  

-1.99 
-5.05 

648. 
2. 88 x l o 6  
654. 
2 -91  x 10 

-0.9 

' -- Ring neu t r a l  axis ---- 
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The -instrumentation on these cylinders provided some interesting informa- 
tion. The radial  deflection gages located on the rings showed that as the load 
increased most of the rings deflected into the theoretically predicted circumferen- 
tial mode shape. Figure 6 shows a typical example of this phenomenon. When the 
radial  deflection at a point of maximum bending on the ring is plotted versus axial 
load the curve obtained is asymptotic to the failure load as is shown in Figure 7. 

Another interesting phenomenon was shown by the s t ra in  gages located on 
the corrugated skin. Two gages were located opposite each other at various points 
on the skin, see Figure 8, so that longitudinal bending of the corrugation could be 
observed. A s  the axial load on the cylinder increased, the s t ra in  versus load plot 
of the two gages in each set remained linear and almost coincident until just  below 
the failure load. 
increased nonlinearly while the strain in the other leveled off and then decreased as 
shown in Figure 9. 
failure of the cylinder w a s  imminent. 
monocoque failures in  their  swiftness. 
phenomenon might be used to determine the general instability failure load of a 
ring-stiffened corrugated cylinder without actually failing the specimen. 

Then at various locations on the cylinder the s t ra in  in one gage 

This meant that the corrugation w a s  bending appreciably, and 
The actual cylinder failures were s imilar  to 
Conjecture can be made that this second 

Axial Load and Bending 

Test data is also available for  a ring-stiffened corrugated cylinder loaded 
in pure bending and for a cylinder loaded simultaneously in bending and axial com- 
pression. Cylinders loaded in  
the above manner are usually analyzed by calculating the maximum compressive 
s t r e s s  due to bending and axial load and then assuming this s t r e s s  to act  along the 
entire periphery of the cylinder. This, however, leads to a conservative prediction 
for the buckling s t r e s s ,  since a stiffened cylinder can withstand a greater  maximum 
s t r e s s  in bending than in pure compression. This increased load carrying capability 
of cylinders in bending can be expressed in t e rms  of a bending factor, P .  If the 
bending factor P and the allowable stress in pure compression CT are known then the 
maximum allowable stress in any combination of bending and compression may be 
calculated from the equation 

Table I1 gives the cylinder geometries and loads. 

max 1 
P 

I - y  (I - - )  

12 



TABLE 11. RING-STIFFENEDCORRUGATED CYLINDERS - 
AXIAL AND BENDING LOADING 

- -__ .~ 

CYLINDERS - -- __ 
Aluminum Alloy 
Cylinder Length (in. ) 

(cm) 

Radius (in. ) 
( c m )  

Corrugation Thickness (in. ) 
( c m )  

Corrugation Pitch (in. ) 
( c m )  

Corrugation Depth (in. ) 
( c m )  

- - 

Type of Ring 

Ring Spacing (in. ) 
( c m )  

Ring In-Plane Moment of Inertia (in. 4,  

Ring Out-of-Plane Moment of Inertia (in. 4 ,  

Ring Torsional Stiffness/GR (in. 4 ,  

Ring A r e a  (in. ') 

(cm4) 

(cm4) 

(cm4) 

(-7 
Ring Eccentricity (in. ) 

( cm)  

Actual Bending Load (Kip-ft. ) 

Actual Axial Load (Kips) 

Actual Maximum S t re s s  (lb. /in. ') 

Calculated Maximum S t re s s  without Bending Factor (lb.  / i n .  ') 

Percent E r r o r  (70) 

( N - W  

( N )  

(N/m') 

(N/  m') 

Calculated Maximum S t re s s  with Bending Factor (lb. / i n .  ') 

Percent  E r r o r  (%) 
IN/ m') !_  - . 

\ro. 6 

268.6 
682.2 

197.6 
501.9 

__ 
075-T6 

0.145 
0.368 

11.40 
28.95 

3.48 
8. 84 

~ _ _ _ _  

I 
51.0 

129.54 

34.4 
0. 1431 

0 
0 

0 
0 

2.48 
16.00 

-6.24 
-15.84 

17,900 
3.79 x I O '  
5,930 
30. 8 x 10' 
13, 530 

37, 560 

15. 9 

1 .20 

.328 

39,700 
2 . 7 4 x  1 0  
9.6 

3.00 x 10' 

2. 59 x 101 

l___ 

\Jo. 7 
075-T6 
33.0 
83.8 

24.7 
62.7 

0.020 
0.051 

I .  43 
3.63 

0.44 
1 .12  

6.38 
16.20 

0.0050 
0.208 

0 
0 

0 
0 

0.040 
0.258 

-0.73 
-1.85 

.61.0 

0 
0 

!. 18 x i o 5  

37, 960 
3.62 x 10' 
28, 620 
1.97 x I O e  
32.6 

1.20 

1.0 

34, 300 
2.36 x IO '  
10.7 

* For this r ing an effective moment of inertia and effective area w e r e  calculated using 
the approach given in reference 9. 
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where y is the ratio of the bending stress to the maximum total&ress.  Table I1 
shows the calculated maximum stress for  these cylinders both without and with the 
bending factorp . For  the latter, p has been taken as I .  20 which is the, ratio of the 
actual failure stress of cylinder No.  7 to the actual failure stress of cylinder No. 1. 
These cylinders are identical; one was tested in bending and the other in compression. 

Add it ion a I Rem a r ks 

The average number of rings ( a )  per  longitudinal half wavelength for the 
cylinders given in Tables I and 11 is relatively low, a varying from I. 7 for 
cylinders No. 2 and No. 3 to 2 .6  for cylinder No. 6. 
a study to determine what e r r o r  is produced by using a "smeared" ring approach 
when a! is low. He states that for stiffened cylinders the e r r o r  is on the order  of 
4 percent for  a = 2.0 and 6 percent for a! = I. 6, the exact e r r o r  being dependent 
upon the cylinder stiffness properties. 

Van der  Neut [ 6 ] performed 

A l l  the cylinders given in Tables I and I1 had some end fixity. Deflection 
measurements indicate that for  cylinders No. 4, 5, and 6 the amount of end 
fixity was negligible. 
ments on the other cylinders to determine the amount of end fixity, but i t  is 
believed to be smal l  for these cylinders also. 

Unfortunately there were not sufficient deflection measure- 

D I S C U S S  ION 

The method for predicting general instability developed in this report  con- 
s iders  the eccentricity of the ring with respect to the skin centerline. 
shown that this factor has a large effect on the general instability failure load. In 
fact, moving the rings from the inside to the outside of the cylinder can sometimes 
change the general instability load 100 percent o r  more. 
instability failure load of cylinder No. 4 is 654 kips ( 2 . 9  x IO6 N) for inside rings 
and 1254 kips (5.6 x I O 6  N )  if the same rings are on the outside of the corrugation. 
This same type of effect is present in cylinders with inside o r  outside longitudinal 
stiffeners as is shown by the test  data in reference 4. 

I t  can be 

A s  an example, the general 

A s  the test resul ts  show, good agreement is obtained for the cylinders 
loaded in bending and for those loaded simultaneously in bending and axial com- 
pression, if a bending factor of I. 20 is applied to the bending portion of the load. 
Cylinders loaded in bending car ry  a greater maximum s t r e s s  because the portion 
of the cylinder that is highly loaded is stabilized by the remainder of the cylinder. 
A t  the present,  though, sufficient information is not available as to exactly what 
bending factor should be used for each particular cylinder, this factor being a 
function of the cylinder stiffness properties. 
mation, it is not recommended that a bending factor be used for design. 

Based on currently available infor- 
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The use of linear small  deflection theory has been justified because the 

A corrugated 
relatively high bending stiffness of a corrugated shell makes the cylinder less 
susceptible to initial imperfections and other monocoque effects. 
shell for which this assumption does not hold true is not envisioned as being 
practical, but still  i t  would be possible to make a cylinder with such a small  
corrugation depth that it would actually approach monocoque in properties. 
a design of this nature a reduction factor will  have to be applied to the failure 
load given by this method. An acceptable technique for determining the reduction 
factor is given by Almroth [ 81 . 

For 

For all the cylinders tested the ring extensional and in-plane bending stiff- 
nesses w e r e  the only ring properties affecting the failure load. It is believed 
by the authors that for most practical applications the out-of-plane bending 
stiffness and the torsional stiffness of the ring a re  of secondary importance. 

In computing the stiffness properties of the ring, care should be taken by 
the analyst that the effective rather  than the apparent stiffness properties are 
used. This is especially true for the out-of-plane properties such as the lateral  
bending and torsional stiffness, but may also be important for the in-plane proper- 
ties of the ring; e. g. a channel section having wide and comparatively thin flanges 
may not be fully effective in bending, as is discussed in reference 9. 

It should also be mentioned that the method given in this report  only de- 
termines the general instability failure load. 
o r  local crippling failures. 

I t  does not check for panel buckling 

CONCLUD ING REMARKS 

Linear small  deflection theory has been used to develop a method to de- 
termine the general instability load of a ring-s tiffened corrugated cylinder under 
axial compression. 
de r s  have been compared with loads calculated by using this method. 
between the calculated and actual failure loads were quite close for  the five 
cylinders loaded in pure compression. When a bending factor of 1 . 2 0  w a s  used, 
good agreement was also obtained for  one cylinder Loaded in pure bending 
and for one cylinder having a combination of axial and bending Load. Since 
calculations must be made for  many different mode shapes before the minimum 
buckling load can be determined, a computer program was developed. 

The general instability failure loads of seven corrugated cylin- 
Agreement 

15 



Forces and moments ----- 
I assumed to be zero 

I / N x  

FIGURE 1. FORCES AND MOMENTS ACTING ON SKIN ELEMENT 
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FIGURE 2. FORCES AND MOMENTS ACTING ON RING ELEMENT 
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Ill I I I1 I l l 1  I 

critical buckling load X 

0 1 . 0  2. 0 3.0 4. 0 

Number of longitudinal half-waves, m 

7 

5 . 0  

FIGURE 3. BUCKLING LOAD VERSUS MODE SHAPE, TEST CYLINDER NO. 1 
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1. 4 

FIGURE 5. RING OF CYLINDER NO. 4 
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Load 

FIGURE 6 .  CIRCUMFERENTIAL MODE SHAPE OF CYLINDER TESTED IN AXIAL 
C OM PR E SSION 

h 
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.rl 

FIGURE 7. RING RADIAL DEFLECTION VERSUS PERCENT LOAD 
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Gage No. 2 

FIGURE 8. TYPICAL STRAIN GAGE LOCATIONS 

T,oad 
FIGURE 9. STRAIN VERSUS LOAD FOR TEST CYLINDER 
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Number of Longitudinal Half-waves, m 

FIGURE 10. BUCKLING LOAD VERSUS MODE SHAPE, REAL AND 
APPARENT MINIMUMS 
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APPEND IX 

I 1 - 1 9  20 - 69 
- 

Case Title r I -  I 

- - - 

The computer program is written in Fortran II. The program notation is 
given on page 24 and the program listing on pages 25 through 27. The sequence 
of steps for program compilation and operation is given in reference 10. 

70 - 80 

- 

The program input data and corresponding column locations on the input 
cards  are in the following form. 

GR 

a x  

QIZR 

lCard I 

R 

C 

QJR 

! 

----- 

5-8 9-12 13-16 17-80 

I =  - -  --- r 
Card 2 

Card 3 

Card 4 
~- 

1 
I 

. -  

17-32 

ER 

TX 

AR 
~ 

~ - 

33-48 

G 

TS 

QIYR 

1 I I I 

where MI,  NI and MM, NN are the first and last values of m and n respectively, 
and 

TX = t (D. F. ) 
TS = t/D. F. 

where D. F. , the development factor,  is defined as the ratio of the average skin 
area pe r  inch of circumference to  the skin thickness. 
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An example of the program output is shown on pages 28 and 29. The 
axisymmetric mode shapes ( n  = 0)  have been included for completeness. 

In using the computer program a sufficient range of mode shapes must 
be considered so that the minimum bdckling load is definitely obtained. This is 
mentioned because it is possible to have more than one apparent minimum buckling 
load as is shown in Figure I O .  

COMPUTER PROGRAM NOTATION 

TEXT NOTATION PROGRAM NOTATION 

a.. 
1J 

C 

- 
m 
- n 

- 
G 

AI J 

C 

QM, QN 

QMBAR 

QNBAR 

Q3 

TX, TS 

AR 

D X ,  DYR, DZR 

E ,  ER 

EBARX 

EBARR 

G, GR 

GBAR 

QIX, QIm, QIZR 

QJR 

QKR 

QL, QLR 

R ,  RR 

24 
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1 - A 1 2 * * 2 * A 3 3  
x x x  = 9. 
Q1 = 00 
E l  = D D * Q l * * 3  '+ CC*cO1**2 + 6 B * O l  + A A  
DQ = o l * A A / (  (A12-2*2 -. A l I * A Z 2 ) * ( Q i J l B A I i * * 2 ) )  

2 1  Q2 = Q1 + DQ 
2 2  E 2  = DD*Q2**3 + CC*Q2**2  + i3E3cW2 + A A  

2 6  Q 1  = Q2 
E l  = E 2  
GO TO 2 1  

I F  ( E l v E 2 )  2 8 9 2 8 9 2 6  

2 8  I F  ( X X X )  2 9 9 2 9 9 3 0  
29 DQ = .01*Q2 

x x x  = 1. 
50 T O  2 1  

3 0  Q3 = Q1 
RAD = - 3 0 * ( D D " L ' 3 ) * * 2  - 2o*OD*CC*Q3 + C C * * 2  - 4o*DD*i3B 
I F  ( R A D )  509  3 1 9  3 1  

3 1  0 4  = ( - ( C C  + DD"C23) + S O R T F ( R A D ) ) / ( 2 . * D D )  
Q 5  = ( - ( C C  + DD*Q3) - S Q R T F ( R P D ) ) / ( 2 . " D D )  
I F  ( Q 4 )  3 4 9  3 4 9  32  

3 2  I F  ( Q 3  - i)4)  3 4 9  3 4 9  3 3  
3 3  (33 = Q4 
3 4  I F  ( (25 )  5 0 9  5 0 9  3 5  
3 5  I F  (03 - Q 5 )  5 0 9  5 0 9  3 6  
3 6  Q 3  = Q 5  
5 0  P = 6 0 2 8 + R * Q 3  

STRES = Q 3 / 7 X  
I F  ( Y )  5 5 9  5 5 9  5 2  

5 5  STKEX = STRES 
M X  = !vl 

NX = N 
G O . T O  5 4  

5 2  I F  (STRES - STHEX) 5 3 9  519 5 1  
5 3  STREX = STRES 

M X  =. M 
NX = N 
GO TO 5 1  

5 4  Y = 1. 
5 1  PUNCH 1 9 9  9 3 9  P9 STIIES, K 9  N 

PLJNCH 2 3  
PUNCH 2 4  
PlJNCH 1 1 9  STREX, M X ,  NX 
GO T O  1 

2 FORMAT ( 4 F 1 6 . 0 9  F16.41 > F 1 6 . 4 /  5F16.41  4 1 4 )  
3 FORMAT ( / / 1 9 X 4 1 h T H E  GkhUtKAL I K S T A d I L I T Y  UF g I N G  STIFFENl;i)/ 

119X44HCORRUGATE3 C Y L I N L E K S  LJIVDE? A X I A L  CO?4PKkSSIUN// )  
4 FORMAT ( 1 9 X 4 9 H  ) 
5 FORMAT ( / / / 3 5 X l O W I N P U T  D A T A )  
6 FORMAT ( 1 5 X l H E 9  14X2HER9 1 5 X l H G 9  14X2HGR9 1 5 X l H H )  

8 FORMAT ( 1 4 X 2 H C L 9  14X2HTX9 1 4 X 2 t i T S 9  13X3Hi ) IXp 1 5 X l H C )  
7 FORMAT (4Fl .6 .0,  F 1 6 . 4 / / )  
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9 F O R M A T  ( 5 F 1 6 . 6 / / )  
10 F O R M A T  ( 1 3 X 3 H O L l i 1  1 4 X Z H A R 9  1 2 X 4 H O I Y R ,  ~ Z X ~ H O I Z H I  1 3 X 3 H L J J d )  
1 1  F O R M A T  ( 4 X F 1 6 . 4 ,  2 ( 7 X I 3 ) )  
12 F O R M A T  I 3 5 X l O H / / / / / / / / / / / / / )  
1 3  F O R M A T  ( 1 4 X 2 H F l l 1  ~ ~ X S H N M I  1 4 X 2 H N 1 1  1 4 X 2 H N N )  
14 F O R M A T  ( 4 ( 1 2 X I 4 ) / / / )  
1 5  F O R M A T  ( 3 5 X l l H O U T P U T  D A T A )  
16 F O R M A T  ( 3 5 X l l H / / / / / / / / / / / / / / )  
1 7  F O R M A T  ( 1 5 X 5 H A X I A L )  
1 8  F O R M A T  ( 7 X 1 3 H L O A D  PER I N C H I  l O X 1 O H A X I A L  L O A D ,  8 X 1 2 H A X I A L  S T R t S S 9  

1 9 X l H M I  9 X 1 H N /  1 
19 F O R M A T  ( 3 ( 4 X F 1 6 . 4 ) ,  2 ( 7 X I 3 ) )  
2 3  F O R M A T  ( / / / 3 X 1 7 H M I N .  A X I A L  S T R E S S )  
24  F O R M A T  ( 2 X 1 8 H I N  T H E  A Z G V t  R A N G k ,  9 X l H Y I  9 X l H N )  
0 1  F O R M A T  (F16.4)  

E N D  

27 



E 
10500000. 

QL 
32.95000c 

OLK 
6.37500C 

M 1  
1 

THE GENERAL INSTAdILITY OF HlNG S T l F F E N E D  
CORRUGATED CYLINDER'S UNDLR A X I A L  COilPRESSIUN 

CYLINDER NO. 1 

INPUT DATA 
I / / / / / / / / /  

T X  
0 0 2 6 6 U O  

MM 
4 

G 
3 9 0 0 0 0 0 *  

T S  . 0 1 5  130 

Q I Y R  
.a050i lu  

N1 
0 

GK 
3 9 0 0 0 0 0 .  

O I X  
0000775 

O I Z K  
o.oo1)ooo 

" 
5 

ii 
24.6800 

C 
- *730000 

Q J H  
~ . 0 0 0 0 0 0  



OLJTPUT E A T A  
/ / I / / / / / / / /  

A X  I 4 L  
L O A D  P E R  INCH 

12335oG930  
3361 .1760  
2 i) 2 8 1 1 2 3 
1 9 4 9  09OLtl 
9 2 8 2 0 7 5 8 5  
30 16  5 1 8  3 
1932.2971 
1877 .6704  
4 8 5 7 0 5 7 1 4  
2262.2310 
1 6 2 6  0 4 8 3  1 
1736 .1352  
2125 .2484  
1445 .5047  
1 2 8 4 0 3 0 1 5  
1551 .2859  
1219 .6112  

8 8 9  0 5 3 3 2  
1001 .3810  
1386.0445 
1 6 7 7  6 8 5 5  

7 5 8  0 9 2 8  3 
887.8293 

1307 .4159  

MIN.  A X I A L  S T R t S S  
I N  THE A B O V E  R A N G E  

2 8 5 3 1  0 1 4 3 0  
to 
ED 

A X I A L  L O A D  

1 9 1 ! 8 2 0 r 9 0 0 3  
32095C~0100 
5 14 3 :,? 9 302  
3 C 2 2 1 6 0 4 ? 0 0  
1435 138.4000 

4 6 7 5 3 1  3'7Od 

2 9 1 0 2 0 . 8 8 0 0  
752799 .4330  
35062b .0800  
2520S9 .2600  
269084 .2800  
329393 .0900  
224339 .3500  
1 9 9 0 5 4 e 4 0 0 0  
240434 .4200  
1 8 9 0 2 8 0 0 2 0 0  
137869 .1100  
1552U4.4403 
214823 .5903  

z 9 4  8 37 . -r 8 o o 

2 0 0 0 2 5 ~ 1 4 0 0  
117626.60C0 
1 3 7 6 0 5 . 0 1 0 0  
2b2536 .910 : I  

p: IN 
2 5 

A X I A L  5 T R E S b  

4 6 3 7 2 5 0 3 C 0 0  
1 L 6 36 i; O L O C  

7624L .8230  
133b4.6650 

34b973 8bOO 
1134U2.9400 

71514.92SC 
70589 .1120  

182596 .6600  
6 5 0 4 4  27812 
61145 .9810  
6526@.240C 
7Yti,Y6 . 5550  
54342  0 2 8 1 0  
4 8 2 0 2 . 0 1 1 0  
58319.01130 
45859 .0450  
3 3 4 4 1  lC00 
37645 .9020  
5 2 1 6 6 0 9 3 6 0  
6307U.8830 
28531 .1400  
3 3377.0410 
491  5b 0 9 7 3 0  

1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
Le 

0 
0 
3 
u 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
5 

5 
5 

- 
3 
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